Световая энергия собирает молекулы: новое исследование открывает путь для создания сложных молекулярных структур
Учёные из Университета Болоньи под руководством профессора Альберто Креди сумели внедрить молекулу нитевидной формы в полость кольцеобразной молекулы, используя светоиндуцированные реакции и процессы самосборки. Это стало возможным благодаря высокоэнергетической геометрии, недоступной при термодинамическом равновесии. Другими словами, свет позволяет создать молекулярное соединение, которое в противном случае было бы недоступно.
«Мы показали, что, подвергая водный раствор воздействию световой энергии, можно предотвратить достижение молекулярной самосборки термодинамического минимума, в результате чего получается продукт, который не соответствует тому, который наблюдается при равновесии. Такое поведение, которое является основой многих функций живых организмов, плохо изучено в искусственных молекулах, поскольку его очень сложно спланировать и наблюдать. Простота и универсальность нашего подхода, вместе с тем фактом, что видимый свет — это чистый и устойчивый источник энергии, позволяют нам предвидеть разработки в различных областях технологий и медицины», — говорит Альберто Креди.

Комплекс А более стабилен, чем комплекс Б, но последний формируется намного быстрее, чем первый. В отсутствие света наблюдается только термодинамически благоприятный комплекс, а именно А.
Облучая раствор видимым светом, азобензол меняет свою форму с расширенной, подобной циклодекстрину, на изогнутую, несовместимую с полостью, в результате чего комплекс диссоциирует. Однако тот же свет может обратно преобразовать азобензол из изогнутой формы в расширенную, и диссоциированные компоненты могут собраться заново.
Поскольку комплекс Б формируется намного быстрее, чем А, при непрерывном освещении достигается стационарное состояние, в котором комплекс Б является доминирующим продуктом. Как только свет выключается, азобензол медленно возвращается к расширенной форме, и через некоторое время наблюдается только комплекс А.
Этот механизм самосборки, связанный с фотохимической реакцией, позволяет использовать энергию света для накопления нестабильных продуктов, тем самым открывая путь для новых методов химического синтеза и разработки динамических молекулярных материалов и устройств (например, наномоторов), которые работают в условиях, не соответствующих равновесию, подобно живым организмам.







