Учёные давно надеются полностью замкнуть цикл, создав ИИ-агентов, которые рекурсивно улучшают себя. Новое исследование демонстрирует впечатляющий пример такой системы.
«Это хорошая работа», — сказал Юрген Шмидхубер, учёный-компьютерщик из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии, не принимавший участия в новом исследовании. «Я думаю, для многих людей результаты являются неожиданными. Поскольку я работаю над этой темой уже почти 40 лет, для меня это, возможно, немного менее удивительно».
В 2003 году Шмидхубер создал решатели задач, которые переписывали свой собственный код только в том случае, если они могли формально доказать полезность обновлений. Он назвал их машинами Гёделя, в честь Курта Гёделя, математика, работавшего над самоссылающимися системами. Но для сложных агентов доказуемая полезность достигается нелегко.
Новые системы, описанные в недавнем исследовании, полагаются на эмпирические доказательства. В знак уважения к Шмидхуберу они называются машинами Дарвина-Гёделя (ДГМ). ДГМ начинается с кодирующего агента, который может читать, писать и выполнять код, используя LLM для чтения и записи. Затем он применяет эволюционный алгоритм для создания множества новых агентов. На каждой итерации ДГМ выбирает одного агента из популяции и поручает LLM создать одно изменение для улучшения способности агента к написанию кода. LLM обладают чем-то вроде интуиции о том, что может помочь, потому что они обучаются на большом количестве кода, написанного человеком. В результате получается управляемая эволюция, что-то среднее между случайной мутацией и доказуемо полезным улучшением. Затем ДГМ тестирует нового агента на эталонном коде, оценивая его способность решать задачи программирования.