Международная группа исследователей из Кембриджского университета и Технического университета Эйндховена преодолела многолетнее препятствие в разработке органических полупроводников, открыв путь к созданию более энергоэффективных OLED-дисплеев и перспективных технологий вроде спинтроники и квантовых вычислений.
Результаты работы описывают материал, заставляющий электроны двигаться по спирали, что позволяет генерировать циркулярно поляризованный свет — ключевое свойство для новых поколений электроники.
В отличие от симметричных неорганических полупроводников, таких как кремний, новый материал имитирует хиральные структуры, встречающиеся в природе. Хиральность — свойство молекул иметь «правую» или «левую» зеркальную конфигурацию — играет критическую роль в биологических процессах, например, в формировании ДНК. Однако до сих пор учёным не удавалось эффективно контролировать это явление в электронных устройствах.
Используя методы молекулярного проектирования, вдохновлённые природой, команда создала полупроводник на основе триазатруксена (TAT), чьи молекулы самоорганизуются в упорядоченные спиральные колонны. Это заставляет электроны двигаться по траектории, подобной резьбе, что придаёт свету циркулярную поляризацию — характеристику, связанную с «закрученностью» электронов.